# ansa $-\eta$-C yclopentadienylimide derivatives of niobium* 

D avid M . A ntonelli, Pedro T. G omes, M alcolm L . H . G reen, A na M . M artins and Philip M ountford
Inorganic Chemistry Laboratory, South Parks R oad, Oxford, UK OX 1 3QR

Treatment of the ansa-bridged $\eta$-cyclopentadienylimide compound $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl} \mathrm{C}_{2}\right] 1$ with M gM eBr gave the binuclear ansa-bridged $\eta$-cyclopentadienylimide derivative [ $\mathrm{MeNb}\left\{\mu-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}$ -$\left.\left\{\mu-\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right\} \mathrm{NbM} e_{2}\right]$ 2. The crystal structure of $\mathbf{2}$ has been determined. D etailed ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N \mathrm{~N}$ R studies showed that $\mathbf{2}$ undergoes an interesting fluxional process involving interchange of two methyl groups under an ansa arch. Reaction of 1 with $\mathrm{Na}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ gave $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ 3, which is also fluxional and undergoes diverse dynamic processes including exchange between $\eta^{1}$ - and $\eta^{5}$-cyclopentadienyl rings. The compounds $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]$ and $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}\right\}_{2}\right]$ have also been prepared.

Recently we reported the synthesis of the compound $\mathrm{C}_{5} \mathrm{H}_{4}^{-}$ $\left(\mathrm{SiMe} \mathrm{e}_{3}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{SiMe}_{3}\right)_{2}$ and showed that it reacted readily with niobium pentachloride to give the ansa-bridged $\eta$-cyclopentadienylimide derivative $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{\kappa N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right]$ 1. ${ }^{1,2}$ We have also reported the synthesis of a series of cyclopentadienyl-imide and -amide derivatives of early transition metals ${ }^{2}$ having in view the current interest in such $G$ roup 4 compounds as homogeneous catalysts for $\alpha$-olefin polymerisation. ${ }^{3-6}$ We have explored further the synthetic potential of the ligand precursor $\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{SiM} \mathrm{e}_{3}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{SiM} \mathrm{e} \mathrm{e}_{3}\right)_{2}$, and here describe the preparation of alkyl derivatives of $\mathbf{1}$. It was envisaged that the dialkyl derivatives $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{R}_{2}\right]$, where $\mathrm{R}=$ methyl or benzyl, would be precursors for the monoalkyl cations $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{\kappa N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{R}\right]^{+}$and that these cations might have catalytic activity. A preliminary account of part of this work has been published. ${ }^{2}$

## Results and Discussion

## Synthesis

Treatment of $\left[\mathrm{Nb}\left\{\eta^{5}, \kappa \mathrm{~N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right] \mathbf{1}$ with an excess of M gM eBr (3-6 equivalents) in diethyl ether affords orange crystals of the binuclear compound $\left[\mathrm{M} \mathrm{eNb}\left\{\mu-\mathrm{C}_{5} \mathrm{H}_{4}\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\mu-\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right\} \mathrm{NbM} \mathrm{e}_{2}\right] \mathbf{2}$ (ca. $60 \%$ yield). This compound decomposes when in contact with chlorinated solvents. It could not be isolated from the reaction between 1 and 2 equivalents of MgM eBr.

The crystal structure of compound $\mathbf{2}$ has been determined and the molecular structure is shown in Fig. 1. Selected distances and angles are given in Table 1. The structure contains only three methyl groups and interestingly a hydrogen has been lost from a $\mathrm{CH}_{2}$ group adjacent to an imide nitrogen. There is a virtually linear alkenylideneamide ligand ${ }^{8-12}$ bridging the two niobium atoms. This is the second structurally characterised example of a bridging $\eta^{2}, \mathrm{\kappa N}-\mathrm{C}(\mathrm{H})=\mathrm{N}$ alkenylideneamide system. ${ }^{12}$ It is bound through a $\mathrm{Nb}(1)-\mathrm{N}(2)$ double bond the length $[1.847(8) \AA$ ] of which is typical of co-ordinated linear alkenylideneamides (1.85-2.01 $\AA$ ), ${ }^{9,12,13}$ lying in-between the normal ranges observed for $\mathrm{Nb}-\mathrm{N}$ single $(2.16-2.33 \AA)^{14}$ and triple bonds (1.73-1.79 $\AA$ ). ${ }^{1,15,16}$ The almost linear $C(21)-$ $\mathrm{N}(2)-\mathrm{Nb}(1)$ geometry $\left[168.0(7)^{\circ}\right]$ indicates a sp-hybridised nitrogen which is bonding to $\mathrm{N} b(1)$. The $\mathrm{C}(\mathrm{H})=\mathrm{N}$ double bond is clearly $\eta^{2}$-co-ordinated to the $\mathrm{Nb}(2)$ centre. H owever, the distances $\mathrm{Nb}(2)-\mathrm{C}(21)[2.32(1) \AA]$ and $\mathrm{Nb}(2)-\mathrm{N}(2)[2.225(7) \AA]$

[^0]

Fig. 1 A CAMERON ${ }^{7}$ plot of $\left[\mathrm{M} \mathrm{eNb}\left\{\mu-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\{\mu-\mathrm{NCH}-\right.$ $\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right\} \mathrm{NbMe}_{2}$ ] 2. Thermal ellipsoids are drawn at the $20 \%$ probability level and H atoms are omitted for clarity
are somewhat longer than those observed in $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{4} \mathrm{Et}\right)\right.$ $\left.\mathrm{Cl}_{2} \mathrm{Ta}(\mu-\mathrm{NCHMe})(\mu-\mathrm{Cl})(\mu-\mathrm{H}) \mathrm{TaCl}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{M}_{4} \mathrm{Et}\right)\right]$ (2.195 and $2.059 \AA$, respectively), ${ }^{12}$ in niobium- $\eta^{2}$-iminoacyl systems ( $\approx 2.18$ and $2.16 \AA$, respectively) ${ }^{17}$ or in niobium- $\eta^{2}(C, N)$ ketenimine fragments ( $\approx 2.16$ and $2,14 \AA$, respectively). ${ }^{18}$ This increase reflects geometrical constraints arising from strain in the bridging ansa system. The C(21)-N (2) distance [1.34(1) $\AA$ ] is also larger than for other co-ordinated alkenylideneamides (1.26-1.28 $\AA$ ), ${ }^{9,13}$ is close to those found in niobium- $\eta^{2}$ iminoacyl and niobium- $\eta^{2}(\mathrm{C}, \mathrm{N})$-ketenimine compounds (1.23$1.33 \AA)^{17,18}$ but is shorter than in the bridging alkenylideneamide tantalum compound ( $1.435 \AA$ )..$^{12}$ The imide nitrogen atom $N(1)$ attached to the non-deprotonated chain is $\mathrm{sp}^{2}$ hybridised and bridges the two metal centres. The corresponding bond lengths $\mathrm{Nb}(2)-\mathrm{N}(1)[2.134(7) \AA]$ and $\mathrm{Nb}(1)-\mathrm{N}(1)[1.901(8) \AA]$ point to a double-bond character in the latter, as a consequence of the nitrogen Ione-pair donation to the $N b(1)$ centre. The $\mathrm{Nb}(2)-\mathrm{Nb}(1)$ distance [2.929(1) $\AA$ ] is similar to the values found for other imide-bridged niobium dimers, ${ }^{19}$ it is slightly larger than in niobium metal ( $2.85 \AA$ ) and substantially larger than for $\mathrm{Nb}-\mathrm{N} \mathrm{b}$ double (2.70-2.74 $\AA$ ) and triple bonds (2.61-2.63 $\AA$ ). ${ }^{20}$ The two niobium, two nitrogen, and two carbon atoms C (11) and $\mathrm{C}(21)$ are nearly coplanar; the maximum deviation from the best fit $N b(1), N b(2), N(1), N(2), C(11), C(21)$ least-squares plane is $0.06 \AA$. The saturated $\left(\mathrm{CH}_{2}\right)_{3}$ chain linking the bridging imide group to the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}$ ring co-ordinated to $\mathrm{Nb}(1)$ appears

Table 1 Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{M} \mathrm{eN} \mathrm{b}\left\{\mu-\mathrm{C}_{5} \mathrm{H}_{4}\right.\right.$ $\left.\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\mu-\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right\} \mathrm{NbMe} e_{2}\right] 2$ with estimated standard deviations (e.s.d.s) in parentheses

| $\mathrm{Nb}(1)-\mathrm{N}(1)$ | $1.901(8)$ | $\mathrm{Nb}(2)-\mathrm{C}(2)$ | $2.26(1)$ |
| :--- | :---: | :--- | ---: |
| $\mathrm{Nb}(1)-\mathrm{Nb}(2)$ | $2.929(1)$ | $\mathrm{Nb}(2)-\mathrm{C}(3)$ | $2.28(1)$ |
| $\mathrm{Nb}(1)-\mathrm{N}(2)$ | $1.847(8)$ | $\mathrm{Nb}(2)-\mathrm{C}(21)$ | $2.32(1)$ |
| $\mathrm{Nb}(1)-\mathrm{C}(1)$ | $2.21(1)$ | $\mathrm{N}(1)-\mathrm{C}(11)$ | $1.46(1)$ |
| $\mathrm{Nb}(2)-\mathrm{N}(1)$ | $2.134(7)$ | $\mathrm{N}(2)-\mathrm{C}(21)$ | $1.34(1)$ |
| $\mathrm{Nb}(2)-\mathrm{N}(2)$ | $2.225(7)$ |  |  |
|  |  |  |  |
| $\mathrm{Nb}(2)-\mathrm{N}(1)-\mathrm{Nb}(1)$ | $92.9(3)$ | $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$ | $114.9(9)$ |
| $\mathrm{Nb}(2)-\mathrm{N}(2)-\mathrm{Nb}(1)$ | $91.5(3)$ | $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(1)$ | $114.6(9)$ |
| $\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Nb}(2)$ | $133.0(6)$ | $\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{Nb}(2)$ | $69.1(5)$ |
| $\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{Nb}(1)$ | $133.7(6)$ | $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{N}(2)$ | $118.0(9)$ |
| $\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{Nb}(1)$ | $168.0(7)$ | $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{Nb}(2)$ | $116.0(8)$ |
| $\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{Nb}(2)$ | $76.6(5)$ | $\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$ | $107.9(9)$ |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{N}(1)$ | $114.6(9)$ | $\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$ | $107.9(8)$ |
| $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$ | $115.1(10)$ |  |  |

to be strained as suggested by the angles subtended at the three formally $\mathrm{sp}^{3}$ carbons of the $\left(\mathrm{CH}_{2}\right)_{3}$ linkage (average $114.9^{\circ}$ ). The bonding in 2 indicated by the molecular structure suggests $\mathrm{Nb}(1)$ and $\mathrm{Nb}(2)$ are 18- and 16-electron centres, respectively.

The mechanism of formation of compound 2 is unknown but two observations are pertinent. First, a gas chromato-graphic-mass spectrometric analysis of the gas-phase products of the reaction between 1 and M gM eBr found $\mathrm{CH}_{4}$ as the only volatile product and secondly, the formation of $\mathbf{2}$ in good yields requires a minimum stoichiometric ratio $\mathrm{Nb}: \mathrm{M} \mathrm{gM} \mathrm{eBr}$ of 1:3. It is possible there is an initial extraction of a proton from the relatively acidic $\mathrm{CH}_{2} \mathrm{~N}$ hydrogens in compound 1 by $\mathrm{CH}_{3}^{-}$of the Grignard reagent giving methane. The resulting compound would be a chloromagnesium ketimide niobium derivative, $\left[\mathrm{Nb}\left\{\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}(\mathrm{H})=\mathrm{N}(\mathrm{M} \mathrm{gBr})\right\} \mathrm{Cl}_{2}\right.$ ], which upon reaction with a second molecule of 1 would substitute one chlorine giving rise to the chlorinated precursor of 2, namely [CIN b-$\left.\left\{\mu-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\mu-\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right\} \mathrm{NbCl}_{2}\right]$, and elimination of $\mathrm{M} \mathrm{gCl}_{2}$. A similar reaction occurs ${ }^{21}$ when lithium ketimides $\left(\mathrm{LiNCR}_{2}\right)$ react with $\left[\mathrm{M}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right]$, where $\mathrm{M}=\mathrm{Ti}$ or Zr . Further reaction of the chloro analogue of $\mathbf{2}$ with M gM eBr would lead to 2.

A ttempts to synthesize $\left[\mathrm{Nb}\left\{\eta^{5}, \kappa \mathrm{~N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{M} \mathrm{e}_{2}\right]$ or the analogous $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{~K}^{2} \mathrm{~N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\mathrm{CH}_{2} \mathrm{SiM} \mathrm{e}_{3}\right)_{2}\right]$, by the addition of either stoichiometric amounts or an excess of LiM e or the less reducing $\mathrm{ZnM} \mathrm{e}_{2}$ or LiCH ${ }_{2} \mathrm{SiM}_{3}$ to $\left[\mathrm{Nb}\left\{\eta^{5},{ }^{5} \mathrm{NN}-\mathrm{C}_{5} \mathrm{H}_{4^{-}}\right.\right.$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}_{3} \mathrm{Cl}_{2}$ ] 1, were unsuccessful and gave complex decomposition products.

## D ynamic N M R studies on compound 2

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2 have been studied in detail. There are 22 inequivalent hydrogens groups and all the 19 carbon nuclei of the asymmetric compound ( $\mathrm{C}_{1}$ symmetry) are inequivalent. Using the NMR experiments ${ }^{22}$ ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ distortionless enhancement by polarisation transfer (DEPT), ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ shift-correlated two-dimensional spectroscopy (COSY) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ shift correlation, the spectra may be fully assigned as shown in Table 2. Variable-temperature N M R studies show 2 is fluxional involving the interchange of the two methyl groups $\mathrm{M} \mathrm{e}_{\mathrm{b}}$ and $\mathrm{Me} \mathrm{e}_{\mathrm{c}}$. A phase-sensitive ${ }^{\mathbf{1}} \mathrm{H}-{ }^{1} \mathrm{H}$ dipolarcorrelated two-dimensional (PSEXSY) NMR spectrum ${ }^{23}$ at 233 K and using a mixing time $\tau_{\mathrm{m}}=0.5 \mathrm{~s}$ provided some spatial assignments for 2 (Fig. 2). The observation of negative crosspeaks confirmed that at $233 \mathrm{~K} \mathrm{Me}_{\mathrm{b}}$ and $\mathrm{Me}_{\mathrm{c}}$ were slowly exchanging, and further that these groups were the only ones undergoing exchange. The positive N OE cross-peak correlating the alkenylideneamide proton $\mathrm{H}_{\mathbf{g}^{\prime}}(\delta 5.12)$ with $\mathrm{M}_{\mathbf{c}}(\delta 1.14)$ allows its spatial distinction from $\mathrm{Me}_{\mathrm{b}}(\delta 0.52)$. The strong cross-peak obtained for $\mathrm{H}_{\mathbf{f}^{\prime} 1}(\delta 2.59)$ with $\mathrm{H}_{\mathbf{a}^{\prime}}(\delta 5.48)$ does not
conform to the solid-state structure shown in Fig. 1. The data suggest that at 233 K the structure of $\mathbf{2}$ in solution adopts a different conformation whereby there has been a clockwise rotation about the $\mathrm{C}_{\mathrm{f}^{\prime}}-\mathrm{C}_{\mathrm{e}^{\prime}}$ bond (see Scheme 1).

The chemical shift data for compound 2 are unexceptional, except those for the alkenylideneamide group. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ resonances of the $\mathrm{CH}=\mathrm{N}$ group occur at $\delta 5.10$ and 109.1, respectively, and they are strongly shifted upfield compared to the values for linear alkenylideneamide transition-metal compounds, for example, $\delta 8.39$ and 164.9 for $\left[\mathrm{Sc}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2}-\right.$ $\left.\left\{\mathrm{N}=\mathrm{C}(\mathrm{H}) \mathrm{CM} \mathrm{e}_{3}\right\}\right]^{8} \delta 9.38$ and $154.4(\mathrm{~J} \mathbf{\text { сн }}=161 \mathrm{~Hz})$ for $[\mathrm{Sc}(\eta-$ $\left.\left.\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2} \mathrm{~N}=\mathrm{C}\left(\mathrm{H} \mathrm{)C}{ }_{6} \mathrm{H}_{4} \mathrm{OM} \mathrm{e}\right\}\right]^{8},^{8} \delta 7.61$ and $166.2(\mathrm{~J} \mathbf{c h}=160 \mathrm{~Hz})$ for $\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{M} \mathrm{e}_{5}\right)_{2}\left\{\mathrm{~N}=\mathrm{C}(\mathrm{H}) \mathrm{CM} \mathrm{e}_{3}\right\} \mathrm{Cl}\right]^{11}$ and $\delta 170-186$ for the compounds $\left[M\left(\eta-C_{5} H_{5}\right)_{2}\{N=C(M e) R\} L\right] B P h_{4}$, where $M=T i^{9}$ or $\mathrm{Zr}, \mathrm{R}=$ alkyl or $\mathrm{Ph}, \mathrm{L}=\mathrm{NCR}$ or tetrahydrofuran, ${ }^{10}$ but less than in the $\mu-\mathrm{C}(\mathrm{H})=\mathrm{N}$ alkenylideneamide tentalum compound ( $\delta$ 3.89). ${ }^{\mathbf{1 2}}$ The N M R features of this group in $\mathbf{2}$ are consistent with its strained $\eta^{2}-C=N$ co-ordination to $\mathrm{Nb}(2)$, as observed in the molecular structure.

A typical temperature dependence of the ${ }^{1} \mathrm{H}$ N M R spectra of compound $\mathbf{2}$ is shown in Fig. 3. The interchange of the methyl groups $M e_{b}$ and $M e_{c}$ reaches the slow-exchange-limit spectrum at 193 K and shows two singlets at $\delta 0.70$ and 1.27. These resonances broaden as the temperature approaches 225 K and coalesce at $\mathrm{T}_{\mathbf{c}}=259 \mathrm{~K}$. At 333 K a single narrow resonance shows the fast-exchange-limit region has been attained. All other ${ }^{1} \mathrm{H}$ resonance lines remain largely unaffected by the exchange process and remain sharp throughout the range of temperatures studied. Below 233 K the $\mathrm{Me}_{\mathrm{b}}{ }^{1} \mathrm{H}$ resonance sharpens to about the same value of the $M e_{a}$ linewidth $\left(\Delta v_{\frac{1}{2}}=3.5 \mathrm{~Hz}\right.$, at 213 K ), whilst the $\mathrm{M} \mathrm{e}_{\mathrm{c}}$ line sharpening is not so pronounced ( $\Delta \nu_{\frac{1}{2}}=6 \mathrm{~Hz}$, at 213 K ). This broadening can be attributed to a faster relaxation due to a stronger interaction with the quadrupolar moment of the ${ }^{93} \mathrm{Nb}$ nucleus $\left(I=\frac{9}{2}\right)$. At 193 K the whole spectrum broadens due to increasing solvent viscosity. Identical features are present in a similar variable temperature ${ }^{1} \mathrm{H}$ N M R study performed at 500 M Hz , in which the coalescence temperature is now $\mathrm{T}_{\mathbf{c}}=277 \mathrm{~K}$. At this temperature the rate constant $k=2^{\frac{1}{2}} \pi(\Delta v)^{24}$ and the free energy of activation $\left(\Delta \mathrm{G}^{\ddagger}\right)$ of the exchange process can be estimated as $1391 \mathrm{~s}^{-\mathbf{1}}$ and $51.0 \mathrm{~kJ} \mathrm{~mol}^{-\mathbf{1}}$, respectively.

The variable-temperature ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{N} M \mathrm{R}$ spectra of compound 2 in the range 193-293 K are shown in Fig. $4 . \mathrm{No}{ }^{13} \mathrm{C}$ resonance assignable to $\mathrm{M} \mathrm{ea}_{\mathrm{a}}$ could be observed; this absence may be attributed to a strong scalar coupling interaction with the quadrupolar ${ }^{93} \mathrm{~N}$ b nucleus. ${ }^{25}$ We note the $\mathrm{Nb}(1)-\mathrm{C}(1)$ bond distance is approximately $0.06 \AA$ shorter than the other two N b-M e distances. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectra clearly show a methyl exchange process. At 193 K the somewhat broad resonance observed at $\delta 41.5$ corresponds to $\mathrm{M} \mathrm{e}_{\mathrm{c}}$ and the sharp one at $\delta$ 38.6 to $\mathrm{M} \mathrm{e}_{\mathrm{b}}$. At higher temperatures these lines coalesce and finally merge into a single peak ( $\delta 39.3$ ) at 293 K . A ll the other resonances remain sharp with increasing temperature except that of the $\mathrm{C}_{\mathbf{g}^{\prime}}$ alkenylidene carbon ( $\delta 108.2$ at 193 K and 109.1 at 293 K ), which broadens considerably and almost disappears at 293 K . This broadening is occurring in the same temperature range as for the methyl exchange and, although no corresponding broadening is observed for the $\mathrm{H}_{\mathbf{g}^{\prime}}$ resonance (even at higher temperatures, see Fig. 3), it seems reasonable to assume there is a common underlying cause for the two observations.

A possible mechanism for the fluxional process is shown in Scheme 2(a). A stereochemically non-rigid niobium site could be envisaged undergoing some geometrical isomerisation process ${ }^{26,27}$ possibly induced by dissociation of the strained alkenylideneamide ligand from the niobium atom bearing $M e_{b}$ and $\mathrm{Me}_{\mathrm{c}}$. During this rearrangement, the two methyl ligands would be able to exchange co-ordination positions by rotation, under the ansa arch. In this equally populated $A_{3} B_{3}$ mutual exchange process ${ }^{28}$ the planar inversion of the $s p$ nitrogen in the alkenylideneamide ligand may also occur [Scheme 2(b)]. 29,30


Fig. 2 Two-dimensional ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ PSEXSY NMR spectrum for compound $\mathbf{2}$ acquired at 233 K . Some of the most important nuclear Overhauser effect ( $N O E$ ) correlations (the heavier black lines indicate positive peaks) and the $M e_{b} / M e_{c}$ chemical exchange process are indicated (the negative peaks are magenta)





Scheme 1 Solid-state structure (left) and solution conformation at $-40^{\circ} \mathrm{C}$ (right) of compound 2

## Synthesis of compound 3 and dynamic NM R study

Treatment of $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{kN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right] \mathbf{1}$ with sodium cyclopentadienide gives the yellow tris(cyclopentadienyl) compound $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{kN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right] 3$ in $80 \%$ yield. This formally 20 -valence-electron compound is analo-
gousto the non-ansa bridged $\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{NBu} \mathrm{N}^{\mathrm{t}}\right)\right]^{31}$ The NMR data show compound $\mathbf{3}$ is fluxional in a manner similar to that observed for $\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{N} \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right)\right]^{31}$ There are three fluxional processes, namely rotation of the $\eta^{1}$ $\mathrm{C}_{5} \mathrm{H}_{5}$ ligand about the $\mathrm{Nb}-\mathrm{C}_{i}$ bond, migration of the niobium centre amongst the carbon atoms of a $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand, and chemical exchange between the $\eta^{5}$ - and $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligands.

Variabletemperature ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra of compound 3 are shown in Figs. 5 and 6, respectively. The techniques ${ }^{22}$ DEPT, ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ shift correlation and selective ${ }^{1} \mathrm{H}$-decoupled ${ }^{13} \mathrm{C}$, were used to assign the majority of the resonances. At 193 K the ${ }^{1} \mathrm{H}$ NMR spectrum shows a single resonance for the $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ring at $\delta 6.02$ and five resonances for a 'static' $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand, as found for [ $\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left(\mathrm{NBu}{ }^{t}\right)$ ]. The full assignments are given in Table 2. The band assigned to $\mathrm{H}_{\text {a(d) }}$ is a broad signal which may be attributed to a faster relaxation due to the quadrupolar moment of the ${ }^{93} \mathrm{~N} b$ nucleus. Similarly, this $\mathrm{H}_{\mathrm{a}(\mathrm{d})}$ line broadening is observed in the ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ spectrum. The lowest-temperature (first) fluxional process, namely, rotation of the $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand about the $\mathrm{Nb}-\mathrm{C}_{\mathrm{i}}$ bond, is better observed in the $500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ and 125.7 $M H z{ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra (in the range 183-223 K). The olefinic protons of the $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand show pairwise coalescence while $\mathrm{H}_{\mathrm{i}}$ remains at the same chemical shift. A bove 223 K


Fig. 3 Variable-temperature $300 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ N M R spectra of compound $\mathbf{2}$ in $\left[{ }^{2} \mathrm{H}_{8}\right.$ ]toluene. A sterisk denotes the residual $\mathrm{CH}_{\mathrm{D}}$ solvent resonance
the three $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ resonances broaden and coalesce, and a broad resonance emerges from the baseline and sharpens progressively. Such behaviour is attributed to migration of the niobium metal centre amongst the carbon atoms of the $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand, through a 1,2-shift mechanism. A bove 263 K , broadening and coalescence (around 293 K ) of the bands due to the $\eta^{1}$ - and $\eta^{5}$ $\mathrm{C}_{5} \mathrm{H}_{5}$ groups indicate that the two groups are slowly exchanging. At the same time a similar process occurs for the diastereotopic $\mathrm{H}_{\mathrm{e}}$ and $\mathrm{H}_{\mathrm{g}}$ chain protons since the four resonances of the $\left(\mathrm{CH}_{2}\right)_{3}$ chain broaden then collapse. It is interesting that the $\mathrm{H}_{\mathrm{f}}$ have near identical chemical shifts at all temperatures.

At 328 K a resonance at $\delta 6.00$ may be assigned to coalescence of the signals of the two $\mathrm{C}_{5} \mathrm{H}_{5}$ rings; there is one resonance at $\delta 5.18$ for $\mathrm{H}_{\mathrm{b}}$ and $\mathrm{H}_{\mathrm{c}}$, and one resonance for $\mathrm{H}_{\mathrm{a}}$ and $\mathrm{H}_{\mathrm{d}}$, the latter being hidden under the $\mathrm{C}_{5} \mathrm{H}_{5}$ peak. This spectrum confirms there is a fast $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \longleftrightarrow \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ exchange which, in consequence, causes a shift in the apparent molecular
symmetry from $\mathrm{C}_{1}$ to $\mathrm{C}_{5}$, since there is an apparent mirror plane formed by the nitrogen atom, the chain carbon atoms, the substituted cyclopentadienyl ring centroid and the Nb atom. At this temperature the process has not attained the fast-exchange limit since the peaks are still broadened. The ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ resonance of the ipso-carbon ( $\mathrm{C}_{\mathrm{Y}}$ ) of the $\mathrm{C}_{5} \mathrm{H}_{4}$ group at $\delta 124.7$ remains sharp with increasing temperature, while the other four carbon resonances are fully collapsed at 298 K . These features reflect the averaging effect of the two fast exchanging $\mathrm{C}_{5} \mathrm{H}_{5}$ groups, and the static nature of the ansa-bridged $\mathrm{C}_{5} \mathrm{H}_{4}$ ring. The exchange between the two $\mathrm{C}_{5} \mathrm{H}_{5}$ rings may involve $\eta^{3}-\eta^{5}$ equilibria. ${ }^{31}$ A summary of the fluxional processes observed for 3 is presented in Scheme 3.

## Synthesis and characterisation of compounds 4 and 5

Treatment of compound $\mathbf{1}$ with 2 , or more, equivalents of

Table 2 A nalytical and spectroscopic data

Compound ${ }^{\text {a }}$
$1\left[\mathrm{Nb}\left\{\eta^{5},{ }^{5} \mathrm{~N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right]$
C, 34.9 (33.8); H, 3.8 (3.6); N , 4.6 (4.9)
M ass spectrum: m/z $283\left(\mathrm{M}^{+}\right)$
$2\left[\mathrm{M} \mathrm{eN} \mathrm{b}\left\{\mu-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\{\mu-\mathrm{NCH}\right.$ -
$\left.\left.\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4}\right\} \mathrm{NbM} \mathrm{e}{ }_{2}\right]$
C, 48.3 (48.5); H, 6.1 (6.0); N , 5.9 (6.0)

$3\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)-\right.$ $\left(\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ ]

C, 62.7 (63.0); H , 5.8 (5.9); N , 4.1 (4.1)
M ass spectrum: m/z $343\left(\mathrm{M}^{+}\right)$

$4\left[\mathrm{Nb}\left\{\eta^{5},{ }^{5} \mathrm{NN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]$ C, 67.2 (66.8); H , 6.3 (6.1); N , 3.5 (3.7)
$5\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{\kappa N}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\eta-\mathrm{CH}_{2} \mathrm{C}-\right.\right.$ (M e) $\left.\left.\mathrm{CH}_{2}\right\}_{2}\right]^{\mathrm{h}}$

## N M R data ${ }^{\text {b }}$

${ }^{1} \mathrm{H}\left(\mathrm{r} . \mathrm{t}\right.$ ) : ${ }^{\mathrm{c}} 6.57\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.5, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.79\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=2.5, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.50\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=5.5, \mathrm{CH}_{2} \mathrm{~N}\right), 2.68$ (m, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}$ ), $2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ )
${ }^{1} \mathrm{H}\left(\mathrm{r} . \mathrm{t}\right.$ ) : ${ }^{\mathrm{d}} 5.93\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\text {H }}=2.4, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.04\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\text {H }}=2.4 \mathrm{C}_{5} \mathrm{H}_{4}\right), 2.67\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=5.4, \mathrm{CH}_{2} \mathrm{~N}\right), 1.69$ (m, $2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}$ ), $1.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right.$ )
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}($ r.t. $):$ : $124.0\left(\right.$ ipso-C of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 117.5\left(\mathrm{CH}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 107.4\left(\mathrm{CH}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 58.1\left(\mathrm{CH}_{2} \mathrm{~N}\right), 32.3$ $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 24.9\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$
${ }^{1} \mathrm{H}$ (r.t.) : ${ }^{\mathrm{e}} 6.05\left(\mathrm{q}+\mathrm{q}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right), 5.99\left(\mathrm{q}+\mathrm{q}, 2 \mathrm{H}, \mathrm{J}_{\text {нн }}=2.4, \mathrm{H}_{\mathrm{b}}+\mathrm{H}_{\mathrm{b}^{\prime}}\right), 5.52\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\text {H }}=2.4, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 5.19(\mathrm{q}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{c}}\right), 5.10\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 4.90\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.4, \mathrm{H}_{\mathrm{c}^{\prime}}\right), 4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g} 1}\right), 4.02\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.4, \mathrm{H}_{\mathrm{d}}\right)$, $3.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g} 2}\right), 3.86\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\text {нн }}=2.4, \mathrm{H}_{\mathrm{d}^{\prime}}\right), 3.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}^{\prime}}\right), 2.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}^{\prime} 1}\right), 2.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right)$, $2.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{e^{\prime}}\right), 1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 1.72-1.58\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{e}}+\mathrm{H}_{\mathrm{f}}+\mathrm{H}_{\mathrm{e}^{\prime}}\right), 0.65\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{Me} \mathrm{e}_{\mathrm{b}}+\mathrm{Me}_{\mathrm{c}}\right)$, $-0.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{M} \mathrm{e}_{\mathrm{a}}\right)$
${ }^{1} \mathrm{H}\left(\mathrm{r} . \mathrm{t}\right.$.): ${ }^{\mathrm{d}} 6.05\left(\mathrm{q}+\mathrm{q}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}+\mathrm{H}_{\mathrm{b}^{\prime}}\right), 5.99\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\text {нн }}=2.4, \mathrm{H}_{\mathrm{b}}\right), 5.55\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\text {н }}=2.4, \mathrm{H}_{\mathrm{a}^{\prime}}\right), 5.18(\mathrm{q}+\mathrm{s}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{c}}+\mathrm{H}_{\mathrm{g}^{\prime}}\right), 4.93\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{H}}=2.4, \mathrm{H}_{\mathrm{c}^{\prime}}\right), 4.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{g} 1}\right), 4.03\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.4, \mathrm{H}_{\mathrm{d}}\right), 3.92(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{g} 2}\right), 3.90\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\text {нн }}=2.4, \mathrm{H}_{\mathrm{d}^{\prime}}\right), 3.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}^{\prime} 2}\right), 2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}^{\prime} 1}\right), 2.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{e}}\right), 2.20(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{e^{\prime}}\right), 1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{f}}\right), 173-1.55\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{e}}+\mathrm{H}_{\mathrm{f}}+\mathrm{H}_{\mathrm{e}^{\prime}}\right), 0.80\left(\mathrm{brs}, 6 \mathrm{H}, \mathrm{M} \mathrm{E}_{\mathrm{b}}+\mathrm{M} \mathrm{e}_{\mathrm{c}}\right),-0.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{M} \mathrm{e}_{\mathrm{a}}\right)$
 or $\left.\mathrm{C}_{\mathrm{b}^{\prime}}\right), 109.1\left(\mathrm{Jch}=161, \mathrm{br}, \mathrm{C}_{\mathrm{g}^{\prime}}\right), 107.4\left(\mathrm{~J} \mathrm{cH}=174, \mathrm{C}_{\mathrm{b}}\right), 105.5\left(\mathrm{~J} \mathrm{ch}=179, \mathrm{C}_{\mathrm{d}^{\prime}}\right), 102.1\left(\mathrm{~J} \mathrm{cH}=174, \mathrm{C}_{\mathrm{c}}\right)$, $101.6\left(J_{\mathrm{cH}}=175, \mathrm{C}_{\mathrm{d}}\right), 101.2\left(\mathrm{~J}_{\mathrm{cH}}=173, \mathrm{C}_{\mathrm{a}^{\prime}}\right), 97.1\left(\mathrm{~J}_{\mathrm{cH}}=171, \mathrm{C}_{\mathrm{c}^{\prime}}\right), 61.3$ ( $\left.\mathrm{J}_{\mathrm{cH}}=135 . \mathrm{C}_{\mathrm{g}}\right), 39.3(\mathrm{br}$, $\mathrm{Me}_{\mathrm{b}}+\mathrm{Me}_{\mathrm{c}} \mathrm{J}_{\mathrm{cH}}=131$ ) ( $\mathrm{Me}_{\mathrm{a}}$ missing), $38.3\left(\mathrm{~J}_{\mathrm{CH}}=130, \mathrm{C}_{\mathrm{f}}\right), 37.5\left(\mathrm{~J}_{\mathrm{CH}}=129, \mathrm{C}_{\mathrm{f}}\right), 27.3\left(\mathrm{~J} \mathrm{CH}=130, \mathrm{C}_{\mathrm{e}}\right)$, 24.4 (J ch $=129, \mathrm{C}_{\mathrm{e}^{\prime}}$ )
${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathrm{H}\right\}$ (r.t.): ${ }^{d} 124.7$ (ipso-C of $\mathrm{C}_{5} \mathrm{H}_{4}$ ), 121.3 (ipso-C of $\mathrm{C}_{5} \mathrm{H}_{4}$ ), $113.6\left(\mathrm{C}_{\mathrm{a}}\right.$ or $\mathrm{C}_{\mathrm{b}^{\prime}}$ ), 112.6 ( $\mathrm{C}_{\mathrm{a}}$ or $\mathrm{C}_{\mathrm{b}^{\prime}}$ ), 109.0 $\left(\mathrm{br}, \mathrm{C}_{\mathrm{g}^{\prime}}\right), 107.4\left(\mathrm{C}_{\mathrm{b}}\right), 105.4\left(\mathrm{C}_{\mathrm{d}^{\prime}}\right), 102.2\left(\mathrm{c}_{\mathrm{c}}\right), 101.6\left(\mathrm{C}_{\mathrm{d}}\right), 101.2\left(\mathrm{C}_{\mathrm{a}^{\prime}}\right), 97.1\left(\mathrm{C}_{\mathrm{c}^{\prime}}\right), 61.3\left(\mathrm{C}_{\mathrm{g}}\right), 39.2\left(\mathrm{br}, \mathrm{M} \mathrm{e} \mathrm{e}_{\mathrm{b}}+\mathrm{M} \mathrm{E}_{\mathrm{c}}\right)$ ( $\mathrm{M} \mathrm{e}_{\mathrm{a}}$ missing), $38.3\left(\mathrm{C}_{\mathrm{f}}\right), 37.6\left(\mathrm{C}_{f^{\prime}}\right), 27.2\left(\mathrm{C}_{\mathrm{e}}\right), 24.6\left(\mathrm{C}_{\mathrm{e}^{\prime}}\right)$
${ }^{1} \mathrm{H}\left(20^{\circ} \mathrm{C}\right):{ }^{9}$ vbr peaks
${ }^{1} \mathrm{H}\left(-40^{\circ} \mathrm{C}\right):^{9} 6.24\left(\mathrm{vbr}, 5 \mathrm{H}, \eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right), 5.99\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\text {нн }}=2.4, \mathrm{H}_{\mathrm{daq})}\right), 5.95\left(\mathrm{~s}, 5 \mathrm{H}, \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right), 5.58(\mathrm{q}, 1 \mathrm{H}$, $\left.J_{\text {HH }}=2.4, H_{c(b)}\right), 4.92\left(q, 1 H, J_{\text {HH }}=2.4, \mathrm{H}_{\mathrm{b}(\mathrm{c})}\right), 3.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHN}), 3.62\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}_{\text {HH }}=2.4, \mathrm{H}_{\mathrm{a}(\mathrm{d})}\right), 3.42$ ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHHN}$ ), $2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CHH}\right), 2.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CHH}\right), 1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ${ }^{1} \mathrm{H}\left(-80^{\circ} \mathrm{C}\right):^{9} 6.65\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha\left(\alpha^{\prime}\right)}\right), 6.35\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\alpha^{\prime}(\alpha)}\right), 6.26\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\beta\left(\beta^{\prime}\right)}\right), 6.19\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\beta^{p^{\prime}(\beta)}}\right)$, $6.02\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right.$ and $\left.\mathrm{H}_{\mathrm{d}(\mathrm{a})}\right), 5.71\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{c}(\mathrm{b})}\right), 5.22\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 4.90\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{b}(\mathrm{c})}\right), 3.73(\mathrm{br}$ $\mathrm{m}, 1 \mathrm{H}, \mathrm{CHHN}), 3.43(\mathrm{brm}, 1 \mathrm{H}, \mathrm{CHHN}), 3.28\left(\mathrm{vbr}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{a}(\mathrm{d})}\right), 2.56\left(\mathrm{brm}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CHH}\right), 2.12(\mathrm{brm}$, $1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CHH}$ ), $1.79\left(\mathrm{br} \mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$
${ }^{13} \mathrm{C}-\left\{{ }^{\mathrm{H}} \mathrm{H}\right\}-40{ }^{\circ} \mathrm{C}:{ }^{9} \delta 124.7\left(\mathrm{C}_{\mathrm{Y}}\right), 116.2\left(\mathrm{C}_{\mathrm{a}(\mathrm{d})}\right), 114.5\left(\mathrm{C}_{\mathrm{c}(\mathrm{b})}\right), 110.4\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right), 107.8\left(\mathrm{C}_{\mathrm{ncc}}\right), 92.8\left(\mathrm{C}_{\mathrm{d}(\mathrm{a})}\right), 59.2$ $\left(\mathrm{C}_{\mathrm{g}}\right), 28.5\left(\mathrm{C}_{\mathrm{f}}\right), 25.8\left(\mathrm{C}_{\mathrm{e}}\right)$.
$\left.{ }^{13} \mathrm{C}^{\mathrm{C}}-\mathrm{T}^{1} \mathrm{H}\right\}\left(-80^{\circ} \mathrm{C}\right):{ }^{9} 139.1\left(\mathrm{C}_{\alpha^{\prime}(\alpha)}\right), 137.8\left(\mathrm{C}_{\alpha\left(\alpha^{\prime}\right)}\right), 124.7\left(\mathrm{C}_{\mathrm{Y}}\right), 120.2\left(\mathrm{C}_{\beta^{\prime}(\beta)}\right), 120.0\left(\mathrm{C}_{\beta\left(\beta^{\prime}\right)}\right), 117.9\left(\mathrm{vbr}, \mathrm{C}_{\mathrm{a}(\mathrm{d})}\right)$, $114.5\left(\mathrm{C}_{\mathrm{c}(\mathrm{b})}\right), 110.4\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right), 106.8\left(\mathrm{C}_{\mathrm{b}(\mathrm{c})}\right), 92.4\left(\mathrm{C}_{\mathrm{d}(\mathrm{a})}\right), 59.2\left(\mathrm{C}_{\mathrm{g}}\right), 57.1\left(\mathrm{C}_{\mathrm{i}}\right), 27.7\left(\mathrm{C}_{\mathrm{f}}\right), 25.8\left(\mathrm{C}_{\mathrm{e}}\right)$
${ }^{1} \mathrm{H}$ (r.t.): ${ }^{\mathrm{e}} 7.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{p}-\mathrm{H}$ of Ph), $6.98(\mathrm{~m}, 4 \mathrm{H}, \mathrm{m}-\mathrm{H}$ of Ph), $6.67(\mathrm{~m}, 4 \mathrm{H}, 0-\mathrm{H}$ of Ph), $5.19(\mathrm{t}, 2 \mathrm{H}$, $\left.J_{\mathrm{HH}}=2.5, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.90\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.5, \mathrm{C}_{5} \mathrm{H}_{4}\right), 2.96\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=5.5, \mathrm{CH}_{2} \mathrm{~N}\right), 2.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$, $1.69\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=7.8, \mathrm{NbCHHPh}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.41\left(\mathrm{~d}, 2 \mathrm{H},{ }^{2} \mathrm{~J}_{\mathrm{HH}}=7.8, \mathrm{NbCHHPh}\right)$ ${ }^{13} \mathrm{C}$ (r.t.): ${ }^{e} 140.5$ (ipso-C of Ph ), 129.0 ( $\mathrm{J}_{\mathbf{c н}}=162,0-\mathrm{and} \mathrm{m}-\mathrm{H}$ of Ph ), 124.2 ( $\mathrm{J}_{\mathbf{c н}}=151, \mathrm{p}-\mathrm{H}$ of Ph ), 117.3 (ipso-C of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 107.9\left(\mathrm{~J} \mathrm{CH}=178, \mathrm{CH}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 101.9\left(\mathrm{~J}_{\mathrm{CH}}=175, \mathrm{CH}\right.$ of $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 55.8(\mathrm{~J} \mathrm{CH}=136$, $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 40.7\left(\mathrm{~J}_{\mathrm{CH}}=135, \mathrm{NbCH}{ }_{2} \mathrm{Ph}\right), 32.9\left(\mathrm{~J} \mathrm{cH}=128, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 25.3\left(\mathrm{~J} \mathrm{cH}=127, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}\right)$
$\left.{ }^{1} \mathrm{H}\left(18{ }^{\circ} \mathrm{C}\right)\right)^{e}\left[\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right.$ absent $], 5.34\left(\mathrm{brt}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.3, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.77\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 2.79(\mathrm{t}, 2 \mathrm{H}$, $\left.J_{\mathrm{HH}}=5.5, \mathrm{CH}_{2} \mathrm{~N}\right), 2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 1.76\left[\mathrm{br} \mathrm{s}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right], 1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$ ${ }^{1} \mathrm{H}\left(100{ }^{\circ} \mathrm{C}\right):{ }^{\mathrm{e}} 5.38\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.3, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.65\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=2.3, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.13\left[\mathrm{vbr}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right]$, $2.80\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}_{\text {нн }}=5.5, \mathrm{CH}_{2} \mathrm{~N}\right), 2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2}\right), 1.71\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}\right], 1.58(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{CH}_{2}$ )
${ }^{\text {a }}$ A nalytical data given as: found (calculated) \%. ${ }^{\mathrm{b}} \mathrm{H} \mathrm{NMR}$ at $300 \mathrm{M} \mathrm{Hz},{ }^{13} \mathrm{C}$ at 75 M Hz . D ata given as: chemical shift ( $\delta$ ), multiplicity ( $s=$ singlet, $d=$ doublet, $t=$ triplet, $m=$ multiplet; $b r=$ broad, $v=$ very), relative intensity, coupling constant (in Hz ) and assignment. ${ }^{c} \operatorname{In} \mathrm{CD}_{2} \mathrm{Cl}_{2} .{ }^{d} \ln \left[{ }^{2} \mathrm{H}_{6}\right]$ benzene. ${ }^{\mathbf{e}}$ In $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene. ${ }^{\text {f }} \mathrm{H}$ idden under the solvent peak. ${ }^{9}$ In $\left[{ }^{2} \mathrm{H}_{8}\right]$ thf. ${ }^{h}$ C haracterised by N M R spectra only.
$\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}$ gives pale yellow [ $\mathrm{Nb}\left\{\eta^{5}, \mathrm{kN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}$ $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right] 4$ in $92 \%$ yield. Compound 4 is an analogue of the non-ansa-bridged $\left[\mathrm{Nb}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{M}_{5}\right)\left(\mathrm{N} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Pr}^{\mathrm{i}}{ }_{2}-2,6\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]^{32}$ and apparently has isostructural relationships with the ansabridged zirconocene derivative $\left[\mathrm{Zr}(e b t h i)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right.$ ] [ebthi $=$ rac-ethylenebis(tetrahydroindenyl)]. This 16 -electron zirconium compound has two $\eta^{1}$-benzyl ligands. ${ }^{33} \mathrm{H}$ owever, it is well known that, depending on the degree of participation of the phenyl $\pi$ system in the metal-ligand bonding, benzyl groups are capable of adopting a variety of co-ordination modes ranging from $\eta^{1}$ to $\eta^{7}$. ${ }^{34,35}$ A mong the $\pi$-benzyl $d^{0}$ early-transition-metal complexes the $\eta^{2}$ co-ordination mode is the most common. ${ }^{35}$ It has been noted that $\eta^{2}$-benzyl ligands (threeelectron donor)
can be differentiated from the $\eta^{1}$-benzyls by their NMR features ${ }^{4,34,36}$ The $\eta^{2}$-benzyl ligands show higher-field shifts of the ortho ${ }^{1} \mathrm{H}$ resonances ( $\delta<6.8$ ), a higher-field shift of the $\mathrm{CH}_{2}$ ${ }^{13} \mathrm{C}$ resonance $(\delta<75)$ together with large methylene ${ }^{1}{ }^{1} \mathrm{CH}$ coupling constants ( $>130 \mathrm{~Hz}$ ) and smaller $\mathrm{CH}_{2}$ geminal coupling constants ( $4<{ }^{2} \int_{\mathrm{HH}}<7 \mathrm{~Hz}$ ), compared with those for $\eta^{1}$-benzyl groups ( $8<{ }^{2}{ }_{\mathrm{HH}}<2 \mathrm{~Hz}$ ).

The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4 shows three resonances for the methylene chain protons ( $\delta 1.44,2.00$ and 2.96) and an $\mathrm{A}_{2} \mathrm{~B}_{2}$ pattern for the $\mathrm{C}_{5} \mathrm{H}_{4}$ ring protons ( $\delta 4.90$ and 5.19) indicating a $\mathrm{C}_{\mathrm{s}}$ symmetry, with a mirror plane containing the nitrogen, the chain carbons, the $\eta-\mathrm{C}_{5} \mathrm{H}_{4}$ ring centroid and the Nb atom. Two equivalent benzyl ligands are present, each


Fig. 4 Variable-temperature $75.43 \mathrm{M} \mathrm{Hz}{ }^{13} \mathrm{CNMR}$ spectra of compound $\mathbf{2}$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene. A sterisks denote the solvent residual resonances

(a)

(b)

Scheme 2 (a) Proposed mechanism for the interconversion of the methyl groups $\mathrm{M} e_{b}$ and $\mathrm{Me} e_{c}$ of compound 2. (b) The proposed inversion about the planar nitrogen in the alkenylidene ligand
possessing two diastereotopic $\mathrm{CH}_{2} \mathrm{Ph}$ protons. These appear as an AB pattern at $\delta 1.69$ and 1.41 with geminal $\mathrm{J}_{\mathrm{HH}}=7.8 \mathrm{~Hz}$. A multiplet at $\delta 6.67$ can be assigned to the shielded o-protons. In the ${ }^{13} \mathrm{C} N M R$ spectrum the $\mathrm{CH}_{2} \mathrm{Ph}$ resonance appears at a relatively high field ( $\delta 40.7$ ) with a C-H coupling ( $\mathrm{J}_{\mathrm{CH}}=135 \mathrm{~Hz}$ ) indicating some $s^{2}$ character. A ccording to these NMR data, which are similar to those found for the isoelectronic zirconium cyclopentadienylamide analogue $\left[\mathrm{Zr}\left\{\eta^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}{ }^{-}\right.\right.$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NM} \mathrm{e} \mathrm{\}}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}$, ${ }^{4}$ two situations are possible. Either both benzyl ligands are co-ordinated in a $\eta^{2}$ fashion or there is one $\eta^{2}$ - and one $\eta^{1}$-co-ordinated benzyl undergoing rapid exchange. Variable-temperature NM R experiments [room temperature (r.t.) to $-80^{\circ} \mathrm{C}$ ] were inconclusive since niobium quadrupolar broadening effects operate at low temperatures. However, no loss of symmetry was observed for 4 down to $-60^{\circ} \mathrm{C}$. If two $\eta^{2}$-benzyl groups were bound to Nb then this would give a formally 20 -electron compound. As noted for
 ansa-bridged analogue ${ }^{31}$ this is not an unprecedented situation for cyclopentadienylimide niobium compounds.
The NMR data for $\left[\mathrm{Nb}\left(\eta-\mathrm{C}_{5} \mathrm{M}_{5}\right)\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-2,6\right)\left(\mathrm{CH}_{2}-\right.\right.$ $\left.\mathrm{Ph})_{2}\right]^{32}$ which is a close analogue of 4 suggest that in this compound both the benzyl ligands are $\eta^{1}$-co-ordinated. Thus, the ${ }^{13} \mathrm{C}$ resonance of the $\mathrm{CH}_{2}$ group appears at $\delta 57.68$ with a geminal coupling $J_{H H}=10.8 \mathrm{~Hz}$ and this is too large for an $\eta^{2}$ co-ordination. The absence of $\eta^{2}$ co-ordination by the benzyl groups of $\left[\mathrm{Nb}\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)\left(\mathrm{NC}_{6} \mathrm{H}_{3} \mathrm{Pr}_{2}-2,6\right)\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]$ may reflect the more sterically demanding $\mathrm{\eta}^{-\mathrm{C}_{5} \mathrm{M} e_{5} \text { group and/or the lack }}$ of strain introduced by the ansa-bridging propyl chain. The latter effect could facilitate the interaction of the benzyl Ph


Fig. 5 Variable-temperature $300 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{M} \mathrm{R}$ spectra of compound $\mathbf{3}$ in $\left[{ }^{2} \mathrm{H}_{8}\right.$ thf. A sterisks denote the solvent resonances; $\mathrm{CP}=\mathrm{C}_{5} \mathrm{H}_{5}$
rings with the laterally projecting lowest unoccupied molecular orbital (LUM O) in compound $4 .{ }^{16}$
Attempts to polymerise ethylene with compound 4 were unfruitful. The addition of $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ or $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, or an excess of mao (mao = methylaluminoxane) to a toluene solution of 4 in the presence of ethylene gave no polyethylene. We note that the compound $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right] \mathbf{1}$ is isoelectronic and an isolobal analogue of the compound $\left[\mathrm{Zr}\left(\eta^{5}-\right.\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}$ ] which is a well known precursor to a homogeneous Ziegler-N atta catalyst. However, all the attempts to polymerise ethylene using $\mathbf{1}$ in the presence of mao ( $1: 1000$ ) under the conditions ${ }^{37}$ used for $\left[\mathrm{Zr}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}_{2}\right]$ were unsuccessful.

Compound 1 was treated with 2 equivalents of $\mathrm{Mg}\left(\mathrm{C}_{3} \mathrm{H}_{4}-\right.$ $\mathrm{Me}-2) \mathrm{Cl}$ giving $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}\right\}_{2}\right] 5$ as a colourless oil in $76 \%$ yield. The room-temperature ${ }^{1} \mathrm{H}$ NMR spectrum of 5 showed bands at $\delta 2.80,2.29$ and 1.58 assignable to the three methylene protons of the ansa chain and there were two somewhat broad resonances for the $\mathrm{C}_{5} \mathrm{H}_{4}$
ring. The data confirm a $\mathrm{C}_{\mathrm{s}}$ symmetry for this compound. A broad signal at $\delta 1.76$ is assigned to methyl groups of the allylic ligands, whereas all the $\mathrm{CH}_{2}$ allyl protons are collapsed into the baseline. This is a situation similar to that observed for 3, and corresponds to chemical exchange between the two allyl ligands at an intermediate rate. As the temperature is raised to $100^{\circ} \mathrm{C}$ there is a marked sharpening of the methyl and $\mathrm{C}_{5} \mathrm{H}_{4}$ resonances, the latter acquiring the typical multiplicities of an $\mathrm{A}_{2} \mathrm{~B}_{2}$ pattern. Simultaneously, it is observed that a broad resonance emerges from the baseline at $\delta 3.13$ and sharpens out progressively while approaching the fastexchange limit. At this temperature this resonance integrates for eight protons, being assigned to all the anti- and synprotons in both of the now fast-exchanging 2-methylallyl groups. Correspondingly, the M e peak integrates for six protons. H owever, at lower temperatures (e.g. $-40^{\circ} \mathrm{C}$ ) very complex spectra are obtained due to gradual slowing of allyl fluxionality. ${ }^{27,38}$ This complexity arises from the several possible


Fig. 6 Variable-temperature $75.43 \mathrm{M} \mathrm{Hz}^{13} \mathrm{C} \mathrm{NMR}$ spectra of compound $\mathbf{3}$ in $\left[{ }^{2} \mathrm{H}_{8}\right]$ thf. A sterisk denotes the solvent resonance; $c p=\mathrm{C}_{5} \mathrm{H}_{5}$

(a)

(b)

(c)

Scheme 3 Fluxional processes proposed for compound 3: (a) rotation of the $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand about the $\mathrm{N} \mathrm{b}-\mathrm{C}_{\text {ipso }}$ bond; (b) a 1,2 shift mechanism for migration of the niobium centre around the $\eta^{1}-\mathrm{C}_{5} \mathrm{H}_{5}$ ring, $[\mathrm{Nb}]=\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$; and (c) $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \longleftrightarrow \eta^{1}$ $\mathrm{C}_{5} \mathrm{H}_{5}$ ring exchange
combinations of $\eta^{3}$ and $\eta^{1}$ co-ordination of the two 2-methylallyl groups in 5, namely as in $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\eta^{1}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right)_{2}\right], \quad\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}^{\left.-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{M} \mathrm{e}-2\right)\left(\eta^{1}-1 . . . ~\right.}\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right)\right]$ or $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{kN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right)_{2}\right]$, and/or from the possible existence of several allyl rotational isomers (endo or exo).
In conclusion, the new reactions and structures proposed for


(iv)/ ${ }^{\text {(iii) }}$

5


Scheme 4 Reactions of $\left[\mathrm{Nb}\left\{\eta^{5}, \mathrm{KN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right]$ with some alkylating agents. (i) MgM eBr (excess) in diethyl ether, room temperature, 12 h ; (ii) $\mathrm{Na}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right.$ ) (2 equivalents) in diethyl ether-thf (1:1), room temperature, 12 h ; (iii) $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}$ (2 equivalents) in diethyl ether, $-40^{\circ} \mathrm{C}$ to room temperature, 4 h ; (iv) $\mathrm{Mg}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right.$ ) Cl ( 2 equivalents) in diethyl ether, $-80^{\circ} \mathrm{C}$ to room temperature, 12 h
the compounds 2-5 are shown in Scheme 4. No catalytic activity towards olefin polymerisation was found using these ansa- $\eta$ cyclopentadienylimide compounds. It seems probable that the lack of catalytic activity is due to the relevant frontier orbitals
being too dissimilar to those of the bent bis( $\eta$-cyclopentadienyl) analogues. We note, however, that other mono- and bis(imido) complexes have been shown to be precursors to ethene polymerisation catalysts. ${ }^{39-41}$

## Experimental

All manipulations and reactions were carried out under an atmosphere of dinitrogen ( $<10 \mathrm{ppm}$ oxygen or water) using standard Schlenk vessels and vacuum-line techniques or in an inert-atmosphere box. Solvents were predried over activated 4 $\AA$ molecular sieves and then distilled under an atmosphere of dinitrogen from potassium (tetrahydrofuran), sodium (toluene), sodium-potassium alloy [light petroleum (b.p. $40-60^{\circ} \mathrm{C}$ ) and diethyl ether] and stored under dinitrogen. Deuteriated NM R solvents were stored in ampoules over activated molecular sieves ( $\mathrm{C}_{6} \mathrm{D}_{6},\left[{ }^{2} \mathrm{H}_{8}\right]$ toluene and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ ) or dried using $\mathrm{Na} / \mathrm{K}$ alloy ( $\left[^{2} \mathrm{H}_{8}\right.$ ]tetrahydrofuran) and transferred by vacuum distillation.

The N M R spectra were recorded on a Brüker A M - $300\left[{ }^{1} \mathrm{H}\right.$, $300 \mathrm{M} \mathrm{Hz} ;{ }^{13} \mathrm{C}, 75.43 \mathrm{M} \mathrm{Hz}$ or $\mathrm{AM}-500\left[{ }^{1} \mathrm{H}, 500 \mathrm{M} \mathrm{Hz} ;{ }^{13} \mathrm{C}\right.$, 125.72 M Hz ] and referenced internally using residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ solvent resonances relative to tetramethylsilane ( $\delta 0$ ). Lowresolution mass spectra were obtained on an A EI M S 302 mass spectrometer, updated by a data-handling system supplied by M ass Spectroscopy Services Ltd. Elemental analyses were performed by the A nalytical L aboratory in this D epartment.

## Syntheses

[ $\left.\mathrm{Nb}\left\{\boldsymbol{\eta}^{\mathbf{5}}, \mathrm{\kappa N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right]$. A solution of $\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{SiM}_{3}\right)$ $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{SiM}_{3}\right)_{2}^{1,2}(3.60 \mathrm{~g}, 10.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of $\mathrm{NbCl}_{5}(2.863 \mathrm{~g}, 10.60$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(500 \mathrm{~cm}^{3}\right)$ at $-80^{\circ} \mathrm{C}$. Themixture was allowed to warm to r.t. and was stirred for 3 d. The solvent was removed under vacuum and the residue extracted with toluene ( $3 \times 60$ $\mathrm{cm}^{3}$ ) at $80^{\circ} \mathrm{C}$. The resulting dark brown extract was concentrated until a powdery precipitate separated. The mixture was then cooled to $-80^{\circ} \mathrm{C}$. A fter 3 d a yellow powder was obtained. Yield $1.58 \mathrm{~g}, 53 \%$.
[M eN b\{ $\left.\mu-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\left(1-\mathrm{NCH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathbf{N b M} \mathrm{e}_{2}\right]\right.$ 2. A suspension of compound $\mathbf{1}(0.38 \mathrm{~g}, 1.35 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was treated dropwise at r.t. with an excess of MgM eBr in $\mathrm{Et}_{2} \mathrm{O}$ ( $2.20 \mathrm{~cm}^{3}$ of $1.87 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 4.11 mmol ). An initial yellow-orange oily precipitate gradually transformed into an orange solution and a pale $\mathrm{MgBrCl} \cdot \mathrm{Et}_{2} \mathrm{O}$ precipitate. This mixture was stirred for 12 h at r.t. The volatiles were removed under reduced pressure and the residue was extracted with pentane $\left(60 \mathrm{~cm}^{3}\right)$. The solvent was removed from the filtrate under reduced pressure and the residue redissolved in $\mathrm{Et}_{2} \mathrm{O}$ $\left(30 \mathrm{~cm}^{3}\right)$. The resulting orange extract was filtered, concentrated to about $10 \mathrm{~cm}^{3}$ and cooled to $-80^{\circ} \mathrm{C}$ giving orange crystals. Y ield $0.19 \mathrm{~g}, 60 \%$.
$\left[\mathrm{Nb}\left\{\boldsymbol{\eta}^{5}, \mathrm{KN}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\boldsymbol{\eta}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\boldsymbol{\eta}^{1}-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]$ 3. To a suspension of compound $\mathbf{1}(0.31 \mathrm{~g}, 1.09 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(40 \mathrm{~cm}^{3}\right)$ was added dropwise a solution of $\mathrm{Na}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(0.21 \mathrm{~g}, 2.38 \mathrm{mmol})$ in thf $\left(40 \mathrm{~cm}^{3}\right)$ at r.t. The mixture changed from yellow to orange in the first minutes and was stirred overnight. The solvent was removed under reduced pressure and the residue extracted with $\mathrm{Et}_{2} \mathrm{O}\left(70 \mathrm{~cm}^{3}\right)$. Concentration and cooling of the extracts to $-80^{\circ} \mathrm{C}$ gave two crops of yellow microcrystals of 3 . Y ield $0.3 \mathrm{~g}, 80 \%$.
$\left[\mathrm{Nb}\left\{\eta^{5},{ }^{\mathbf{K}} \mathrm{N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]$ 4. A suspension of compound $\mathbf{1}(0.24 \mathrm{~g}, 0.85 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was cooled to $-40^{\circ} \mathrm{C}$ and a solution of $\mathrm{Mg}\left(\mathrm{CH}_{2} \mathrm{Ph}\right) \mathrm{Cl}$ in $\mathrm{Et}_{2} \mathrm{O}\left(1.42 \mathrm{~cm}^{3}\right.$ of a $1.2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution, 1.70 mmol ) added dropwise. The mixture was allowed to warm to r .t. and stirred for 4 h . The solvent was removed under reduced pressure and the residue extracted
with pentane ( $50 \mathrm{~cm}^{3}$ ). The resulting yellow extract was filtered from the off-white $\mathrm{M} \mathrm{GCl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ residue and the volatiles were removed under reduced pressure. A fter extraction of the residue with $\mathrm{Et}_{2} \mathrm{O}\left(60 \mathrm{~cm}^{3}\right)$ and filtration, the filtrate was concentrated and cooled to $-80^{\circ} \mathrm{C}$ giving pale yellow crystals of 4. A second crop of crystals was isolated by concentration of the mother-liquor. Combined yield $0.31 \mathrm{~g}, 92 \%$.
$\left[\mathrm{Nb}\left\{\boldsymbol{\eta}^{5}, \mathrm{KNN}^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left\{\mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}\right\}_{2}\right]$. A suspension of compound $\mathbf{1}(0.287 \mathrm{~g}, 1.01 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ was cooled to $-80^{\circ} \mathrm{C}$ and a solution of $\mathrm{Mg}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{Me}-2\right) \mathrm{Cl}$ in $\mathrm{Et}_{2} \mathrm{O}$ $\left(4.9 \mathrm{~cm}^{3}\right.$ of a $0.42 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution, 2.06 mmol ) was added dropwise. The mixture was allowed to warm to r.t. and stirred overnight. The solvent was removed under reduced pressure and the residue extracted with pentane ( $50 \mathrm{~cm}^{3}$ ). The resulting colourless solution was filtered from the off-white $\mathrm{M} \mathrm{gCl}_{2} \cdot \mathrm{Et}_{2} \mathrm{O}$ residue and the volatiles were removed under reduced pressure A fter extraction with $\mathrm{Et}_{2} \mathrm{O}\left(60 \mathrm{~cm}^{3}\right)$ and filtration, the solvent was removed under reduced pressure to give 5 as an off-white oil. Y ield $0.230 \mathrm{~g}, 76 \%$.

## Attempted polymerisation of ethylene

U sing the $\left[\mathrm{N} \mathrm{b}\left\{\eta^{5},{ }_{1} \mathrm{~N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\} \mathrm{Cl}_{2}\right.$ ] mao system. A solution of mao ( $2.311 \mathrm{~g}, 39.8 \mathrm{mmol}$ ) in toluene ( $15 \mathrm{~cm}^{3}$ ) at $25^{\circ} \mathrm{C}$ was equilibrated with ethylene at 2 bar relative pressure. A yellow toluene solution ( $5 \mathrm{~cm}^{3}$ ) of compound $\mathbf{1}(0.011 \mathrm{~g}, 0.039$ mmol ) was added to the mao solution and the pressure was maintained at 2 bar. Initially the solution turned to pale orange. A fter 26 h no polyethylene was observed and the deep orange reaction mixture contained a small amount of a deep red precipitate. Work-up of the reaction mixture showed the absence of polyethylene fractions.

Using the $\left[\mathrm{Nb}\left\{\eta^{5},{ }^{5} \mathrm{~N}-\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right\}\left(\mathrm{CH}_{2} \mathrm{Ph}\right)_{2}\right]-\left[\mathrm{CPh}_{3}\right]$ $\left[B\left(C_{6} F_{5}\right)_{4}\right]$ system. A pale yellow solution of compound $\mathbf{4}(0.018$ $\mathrm{g}, 0.046 \mathrm{mmol}$ ) in toluene ( $25 \mathrm{~cm}^{3}$ ) was transferred to a F ischerPorter pressure vessel. This solution at $25^{\circ} \mathrm{C}$ was equilibrated with ethylene at 2 bar relative pressure. Addition of an orange solution of $\left[\mathrm{CPh}_{3}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](0.041 \mathrm{~g}, 0.046 \mathrm{mmol})$ in toluene ( $25 \mathrm{~cm}^{3}$ ) and re-establishment of the ethylene pressure gave, after 2 h , a deep red solution with a trace of a dark precipitate. A fter 7 h the solution was greenish and a dark precipitate could be observed. A fter 17 h the excess of ethylene was vented and some drops of methanol were added which immediately recovered a red colour. Subsequent addition of methanol caused decomposition of the system. N o polyethylene fractions could be recovered after the mixture work-up.

## C rystallography

D ata collection and processing parameters for compound $\mathbf{2}$ are given in Table 3. Data were collected on an Enraf-N onius CAD4 diffractometer, an empirical absorption correction based on azimuthal $\psi$-scan data was applied and the data were corrected for L orentz-polarisation effects. Systematically absent reflections were rejected and equivalent reflections were merged. The heavy-atom positions were determined from a Patterson synthesis. Subsequent Fourier-difference syntheses revealed the positions of all other non-hydrogen atoms. H ydrogen atoms could not be located from difference syntheses and were placed in estimated positions ( $\mathrm{C}-\mathrm{H} 0.96 \AA$ ) with isotropic thermal parameters 1.3 times that of the $\mathrm{U}_{\text {equiv }}$ of the supporting carbon atom. The non-hydrogen atoms were refined against $F_{0}$ using full-matrix least-squares procedures with the hydrogen atoms 'riding' on their supporting carbon atoms. The data were corrected for the effects of anomalous dispersion and isotropic extinction in the final stages of refinement. Crystallographic calculations were carried out using the CRY STA LS ${ }^{42}$ program on a MicroVAX 3800 computer in the Chemical Crystallography L aboratory, Oxford.

Table 3 D ata collection and processing parameters for compound 2


A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, Issue 1. A ny request to the CCDC for this material should quote the full literature citation and the reference number 186/526.

## Acknowledgements

Wethank NATO and Junta N acional de Investigação Científica e Tecnológica (Portugal) for fellowships (to P. T. G. and A. M. M., respectively), Wolfson College, Oxford for a Junior Research Fellowship (to P. M.) and Drs. L.-L. Wong, J. Claridge and J. R. A scenso for helpful discussions.

## References

1 D. M. A ntonelli, M . L. H. G reen and P. M ountford, J. Organomet. Chem., 1992, 438, C4.
2 P. T. Gomes, M. L. H. Green, A. M . M artins and P. M ountford, J. Organomet. Chem., in the press.

3 J. C. Stevens, F. J. Timmers, R. D. Wilson, G. F. Schmidt, P. N. Nicklas, R. K. Rosen, G. W. K night and S-Y Lai, Eur. Pat., 0416815A 2, 1991; J. M. Canich, G. G. H latky and H. W. Turner, Int. Pat., WO 92/00333, 1992.
4 A. K. Hughes, A. M eetsma and J. H. Teuben, Organometallics, 1993, 12, 1936.
5 P. J. Shapiro, W. D. Cotter, W. P. Schaefer, J. A. Labinger and J. E. Bercaw, J. Am. C hem. Soc., 1994, 116, 4623; W. A. H errmann and M. J. A. M oraweitz, J. Organomet. Chem., 1994, 482, 169; K. E. du Plooy, U. M oll, S. Wocadlo, W. M assa and J. Okuda, Organometallics, 1995, 14, 3129; W. A. Herrmann, W. Baratta and M. J. A. M oraweitz, J. Organomet. Chem., 1995, 497, C4; W. A . H errmann, M . J. A . M oraweitz and W. Baratta, J. Organomet. Chem., 1996, 506, 357; D. W. Carpenetti, L. K loppenmburg, J. T. K upec and J. L. Petersen, O rganometallics, 1996, 15, 1572.

6 M. Bochmann, J. Chem. Soc., D alton Trans., 1996, 255 and refs. therein
7 D. J. Watkin, C. K. Prout and L. J. Pearce, CAM ERON, Chemical Crystallography L aboratory, U niversity of Oxford, 1996.
8 J. E. Bercaw, D. L. D avies and P. Wolczanski, Organometallics, 1986 5, 443.

9 M . Bochmann, L. M . Wilson, M . B. H ursthouse and M . M otevalli, Organometallics, 1988, 7, 1148 and refs. therein.
10 Y. W. A lelyunas, R. F. Jordan, S. F. Echols, S. L. Borowsky and P. K. Bradley, O rganometallics, 1991, 10, 1406.

11 G. A. Luinstra, J. Vogelzang and J. H. Teuben, Organometallics, 1992, 11, 2273.
12 M. R. Churchill, H. J. Wasserman, P. A. Belmonte and R . R . Schrock, Organometallics, 1982, 1, 559.
13 A. G. Orpen, L. Bramer, F. H. Allen, O. K ennard, D. G. Watson and R. Taylor, J. Chem. Soc., D alton Trans., 1989, S1.

14 M. A. A. F. de C. T. Carrondo, J. M orais, C. C. Romão, M. J. Romão and L. F. Veiros, Polyhedron, 1993, 12, 765 and refs. therein.
15 W. A. Nugent and J. M. M ayer, M etal-Ligand M ultiple Bonds, Wiley, N ew York, 1988.
16 D. N. Williams, J. P. M itchell, A . D. Poole, U. Siemeling, W. Clegg, D. C. R. Hockless, P. A. O'N eil and V. C. Gibson, J. Chem. Soc., D alton Trans., 1992, 739.
17 A. Antiñolo, M. Fajardo, R. Gil-Sainz, C. López-M ardomingo, P. M artín-Villa, A . Otero, M . M . K ubicki, Y. M ignier, S. El K rami and Y. M ourad, O rganometallics, 1993, 12, 381.
18 A. Antiñolo, M. Fajardo, C. López-M ardomingo, A. Otero, Y. M ugnier and Y. M ourad, O rganometallics, 1990, 9, 2919.

19 D. A. Lemenovskii, V. P. Fedin, Yu. L. Slovohotov and Y u. T. Struchkov, J. Organomet. Chem., 1982, 228, 153.
20 M. J. Calhorda and R. H offmann, J. A m. Chem. Soc., 1988, 110, 8376.

21 M . R . Collier, M . F. L appert and J. M cM eeking, Inorg. N ucl. Chem. Lett., 1971, 7, 689.
22 A. E. Derome, M odern NM R Techniques for Chemistry Research, Pergamon, Oxford, 1987.
23 B. H. M eier and R. R. Ernst, J. Am. Chem. Soc, 1979, 101, 6441; J. Jeener, B. H. M eier, P. Bachmann and R. R. Ermst, J. Phys. C hem., 1979, 71, 4546.
24 M. L. H. Green, L.-L. Wong and A. Sella, Organometallics, 1992, 11, 2660.
25 M. L. H. Green, D. O'H are and J. G. Watkin, J. Chem. Soc., C hem. Commun., 1989, 698; M. L. H. Green, A. K. H ughes, P. C. M cG owan, P. M ountford, P. Scott and S. J. Simpson, J. Chem. Soc., D alton Trans., 1992, 1591; A. N. Chernega, M . L. H. Green and A. G. Suárez, J. Chem. Soc., D alton Trans., 1993, 3031.
26 L. M. Jackman and F. A. Cotton (Editors), Dynamic Nuclear M agnetic Resonance Spectroscopy, A cademic Press, New York, 1975, chs. 8-12.
27 B. E. M ann, in Comprehensive Organometallic Chemistry, eds. G. Wilkinson, F. G. A. Stone and E. W. A bel, Pergamon, Oxford, 1982, vol. 3, p. 89; J. W. Faller, in Encyclopedia of Inorganic C hemistry, ed. R.B. K ing, Wiley, Chichester, 1994, vol. 7, p. 3914.
28 J. P. Jesson and E. L. M uetterties, in ref. 26, p. 253.
29 R. J. Cook and K. M islow, J. A m. Chem. Soc., 1971, 93, 6703.
30 L. M . Jackson, in ref. 26, p. 203.
31 M. L. H. Green, D. M. M ichaelidou, P. M ountford, A. G. Suárez and L.-L. Wong, J. Chem. Soc., D alton Trans., 1993, 1593.
32 J. K. Cockcroft, V. C. Gibson, J. A. K. Howard, A. D. Poole, U. Siemeling and C. Wilson, J. Chem. Soc., Chem. Commun., 1992, 1668.

33 R . F. Jordan, R.E. LaPointe, N. Baezinger and G. Hinch, Organometallics, 1990, 9, 1539.
34 P. Legzdins, R. H. Jones, E. C. Phillips, V. C. Yee, J. Trotter and F. W. B. Einstein, Organometallics, 1990, 9, 882 and refs. therein

35 C. Pellecchia, A. Immirzi, D. Pappalardo and A. Peluso, Organometallics, 1994, 13, 3773 and refs. therein.
36 S. L. Latesky, A . K . M cM ullen, G. P. Niccolai, I. P. Rothwell and J. C. H uffman, O rganometallics, 1985, 4, 902.

37 W. K aminsky, R. Engehausen, K. Zoumis, W. Spaleck and J. Rohrmann, M akromol. C hem., 1992, 193, 1643 and refs. therein.

38 K . Vrieze, in ref. 26, p. 441.
39 M . P. Coles and V. C. G ibson, Polym. Bull., 1994, 33, 529.
40 S. Scheuer, J. Fischer and J. K ress, O rganometallics, 1995, 14, 2627.
41 M. P. Coles, C. I. Dalby, V. C. Gibson, W. Clegg and M. R. J. Elsegood, J. Chem. Soc., Chem. C ommun., 1995, 1709.
42 D. J. Watkin, J. R. Carruthers and P. W. Betteridge, CRY STALS U ser Guide, Chemical Crystallography Laboratory, U niversity of Oxford, 1985.


[^0]:    * N on-SI unit employed: bar $=10^{5} \mathrm{~Pa}$

